Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies

نویسندگان

  • Lanju Liang
  • Minggui Wei
  • Xin Yan
  • Dequan Wei
  • Dachuan Liang
  • Jiaguang Han
  • Xin Ding
  • GaoYa Zhang
  • Jianquan Yao
چکیده

A novel broadband and wide-angle 2-bit coding metasurface for radar cross section (RCS) reduction is proposed and characterized at terahertz (THz) frequencies. The ultrathin metasurface is composed of four digital elements based on a metallic double cross line structure. The reflection phase difference of neighboring elements is approximately 90° over a broadband THz frequency. The mechanism of RCS reduction is achieved by optimizing the coding element sequences, which redirects the electromagnetic energies to all directions in broad frequencies. An RCS reduction of less than -10 dB bandwidth from 0.7 THz to 1.3 THz is achieved in the experimental and numerical simulations. The simulation results also show that broadband RCS reduction can be achieved at an incident angle below 60° for TE and TM polarizations under flat and curve coding metasurfaces. These results open a new approach to flexibly control THz waves and may offer widespread applications for novel THz devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding...

متن کامل

Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction

In this work, a broadband and broad-angle polarization-independent random coding metasurface structure is proposed for radar cross section (RCS) reduction. An efficient genetic algorithm is utilized to obtain the optimal layout of the unit cells of the metasurface to get a uniform backscattering under normal incidence. Excellent agreement between the simulation and experimental results show tha...

متن کامل

Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers

Synthetic fractals inherently carry spatially encoded frequency information that renders them as an ideal candidate for broadband optical structures. Nowhere is this more true than in the terahertz (THz) band where there is a lack of naturally occurring materials with valuable optical properties. One example are perfect absorbers that are a direct step toward the development of highly sought af...

متن کامل

Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase

A new concept of the coding phase gradient metasurface (CPGM) is proposed, which is constructed using the phase gradient metasurface as the coding elements. Different from the previous coding metasurface (CM), both the coding sequences and gradient phases in the coding elements are designed to manipulate the electromagnetic (EM) wave for the CPGMs, and thus the manipulation will be more flexibl...

متن کامل

Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016